Research Projects

Southeastern Everglades Ecosystem Monitoring Program

C111 white zone tree islandsIn the southeastern Everglades, widespread changes including hypersalinity, marine transgression, reduced macrophyte productivity, and expansion of degraded habitat known as the “white zone” have occurred over the last 50 years. Modified freshwater delivery due to water management and background sea-level rise are attributed (Ross et al. 2000). In Taylor Slough, water management has altered the timing and duration of flooding resulting in the conversion of areas of open water slough to short hydroperiod marsh. Our goal is to understand how changes in quantity, timing and quality of water deliveries will affect Taylor Slough, downstream wetlands and the Florida Bay estuary.…Read more about this project


Hydrology, phosphorus dynamics and plant-soil interactions in Everglades tree islands

plant soil interactionsIn the Everglades, tree islands are considered characteristic of the ecological “health” of the landscape. Phosphorus (P) levels in upland tree island soils are >100 times higher than P in adjacent marsh soils. Of primary concern is conservation of tree island habitat and maintaining tree island soil P to prevent P enrichment of local marsh communities. In this project, we are relating tree island community structure, hydrology and hydrogeochemical characteristics on four tree islands that vary along hydrologic and disturbance gradients to help further define characteristics of “healthy” tree islands and to refine tree island monitoring and performance measures.…Read more about this project


Soil, water and course woody debris CO2 fluxes and aqueous CO2 in a tidal mangrove forest in the Florida Everglades

soil respirationMangrove forests cover 1% of the continental surface but represent large C stocks (eg. Micronesian forest 400-1400 Mg C ha-1; Kauffman et al. 2011) due to large belowground C stocks. Respiration flux from belowground, as CO2 to the atmosphere or as dissolved aqueous CO2, is a key component of coastal C cycling. Variation in soil respiration fluxes can be a function of numerous physical and biological factors including temperature, root production, benthic microalgae, invertebrates, duration and frequency of inundation, salinity, alkalinity and nutrient availability. Our goal is to quantify soil CO2 flux rates and patterns of aqueous pCO2 as a function of inter- and intra-site variability to elucidate key factors controlling soil respiration fluxes and losses of mangrove forest C.…Read more about this project


Soil carbon responses to salt water intrusion from projected sea-level rise

Mesocosm FullscaleThe interlinked biological processes that drive carbon cycling in Everglades coastal wetlands are poorly understood but critically important for predicting responses to sea-level rise, climate change, and outcomes of Everglades restoration. In conjunction with several co-investigators, our overall objective for this work is to quantify the effects of multiple drivers on C cycling in Florida Coastal Everglades ecosystems. Results of this and future experiments will guide development of biogeochemical models leading to an understanding of the effects of sea-level rise and water management strategies on coastal peat stability.…Read more about this project


Coastal peatland studies in Bocas del Toro, Panama

coastal peatlandTropical peatlands have important conservation value. These wetlands often support animal and plant species that are rare or of otherwise limited distribution, maintain freshwater and coastal water quality and preserve large stocks of atmospheric carbon despite their small spatial extent. Natural gradients such as those arising from peatland ecosystem development provide an important framework for investigating patterns and processes contributing to ecosystem structure. Research on tropical peatlands is growing but these systems are still poorly studied, especially in the Neotropics. Our overall goal for this work is to contribute to a growing understanding of the importance of peatland ecosystem conservation in Tropical America. Our studies focus on plant-soil interactions mediated by nutrient status, especially in the context of community structure linkages, organic matter decomposition and ecosystem carbon storage.…Read more about this project